Q. 1 The domain of the function $f(x)=1 /(2-\cos 3 x)$ is
(a) $(1 / 3,1)$
(b) $[1 / 3,1]$
(c) $(1 / 3,1]$
(d) R
Q. 2 The value of $\cos 420^{\circ}$ is
(a) 0
(b) 1
(c) $1 / 2$
(d) $\sqrt{ } 3 / 2$
Q. 3 If $\tan A-\tan B=x$ and $\cot B-\cot A=y$, then the value of $\cot (A-B)$ is
(a) $x+y$
(b) $1 / x+y$
(c) $x+1 / y$
(d) $1 / x+1 / y$
Q. 4 The modulus of $1+i \sqrt{ } 3$ is
(a) 1
(b) 2
(c) 3
(d) None of these
Q. 5 In the binomial expansion of $(a+b)^{n}$, the coefficient of fourth and thirteenth terms are equal to each other, then the value of n is
(a) 10
(b) 15
(c) 20
(d) 25
Q. 6 The number of ordered triplets of positive integers which are solution of the equation $x+y+z=100$ is
(a) 4815
(b) 4851
(c) 8451
(d) 8415
Q. 7 Let $E=\{1,2,3,4\}$ and $F=\{1,2\}$ Then, the number of onto functions from E to F is
(a) 14
(b) 16
(c) 12
(d) 8
Q. 8 If A is any square matrix of order 3×3 such that $|a|=3$, then the value of $|\operatorname{adj} . \mathrm{A}|$ is?
(a) 3
(b) 13
(c) 9
(d) 27
Q. 9 Find the area of the triangle with vertices $\mathrm{P}(4,5), \mathrm{Q}(4,-2)$ and $\mathrm{R}(-6,2)$.
(a) 21 sq. units
(b) 35 sq. units
(c) 30 sq. units
(d) 40 sq. units
Q. 10 Let $\mathrm{f}:(-1,1) \rightarrow R$ be a differentiable function with $\mathrm{f}(0)=-1$ and $\mathrm{f}^{\prime}(0)=1$. Let $\mathrm{g}(\mathrm{x})=[\mathrm{f}(2 \mathrm{f}(\mathrm{x})+2)]^{2}$. Then $\mathrm{g}^{\prime}(0)=$
(a) 4
(b) -4
(c) $\log 2$
(d) $-\log 2$
Q. 11 Derivative of $\cot \mathrm{x}^{\circ}$ with respect to x is
(a) $\operatorname{cosec} x^{\circ}$
(b) $\operatorname{cosec} \mathrm{x}^{\circ} \cot \mathrm{x}^{\circ}$
(c) $-\operatorname{cosec}^{\wedge} 2 x^{\circ}$
(d) $-\operatorname{cosec} \mathrm{x}^{\circ} \cot \mathrm{x}^{\circ}$
Q. 12 Evaluate: $\int(2 \tan x-3 \cot x)^{2} d x$
(a) $-4 \tan x-\cot x-25 x+C$
(b) $4 \tan x-9 \cot x-25 x+C$
(c) $-4 \tan x+9 \cot x+25 x+C$
(d) $4 \tan x+9 \cot x+25 x+C$
Q. $13 \int \cot ^{2} \mathrm{x} d \mathrm{x}$ equals to
(a) $\cot x-x+C$
(b) $\cot x+x+C$
(c) $-\cot x+x+C$
(d) $-\cot x-x+C$
Q. 14 The points with position vectors $(2.6),(1,2)$ and $(a, 10)$ are collinear if the of a is
(a) -8
(b) 4
(c) 3
(d) 12
Q. $15|a \times b|^{2}+|a . b|^{2}=144$ and $|a|=4$, then $|b|$ is equal to
(a) 12
(b) 3
(c) 8
(d) 4
Q. 16 The equation of the plane through the origin and parallel to the plane $3 x-4 y+5 z+6=0$
(a) $3 x-4 y-5 z-6=0$
(b) $3 x-4 y+5 z+6=0$
(c) $3 x-4 y+5 z=0$
(d) $3 x+4 y-5 z+6=0$
Q. 17 The area of the quadrilateral ABCD , where $\mathrm{A}(0,4,1), \mathrm{B}(2,3,-1), \mathrm{C}(4,5,0)$ and $\mathrm{D}(2,6,2)$, is equal to
(a) 9 sq. units
(b) 18 sq. units
(c) 27 sq. units
(d) 81 sq. units
Q. 18 Let A and B be two events. If $P(A)=0.2, P(B)=0.4, P(A \cup B)=0.6$, then $P(A / B)$ is equal to:
(a) 0.8
(b) 0.5
(c) 0.3
(d) 0
Q. 19 Region represented by $\mathrm{x} \geq 0, \mathrm{y} \geq 0$ is
(a) first quadrant
(b) second quadrant
(c) third quadrant
(d) fourth quadrant
Q. 20 If a matrix A is both symmetric and skew symmetric then matrix A is
(a) a scalar matrix
(b) a diagonal matrix
(c) a zero matrix of order $n \times n$
(d) a rectangular matrix

ANSWER KEY

1b
2c
3d
4b
5b
6b
7b
8c
9b
10b
11c
12b
13d
14 c
15b
16 c
17a
18d
19a
20b

